

TRUESOIL PROJECT Understanding trade-offs and dynamic interactions between SOC stocks and GHG emissions for climate-smart agrisoil management

Authors: Apostolakis A.¹, Englert P.¹, Münter C.¹, Dörsch P.², Jumadi O.³, Khalil M.I.^{4,8}, Klumpp K.⁵, Morales S.⁶, Chukwuebuka C.O.⁷, Osborne B.⁸, Perez-Quezada J.⁹, Philatie M.¹⁰, Posse G.¹¹, Frasier I.¹¹, Restovich S.¹¹, Serrano-Ortiz P.¹², Kjær S.T.², Turunen P.¹⁰, van Wesemael B.¹³, Verheijen F.¹⁴, **Meijide A.¹**

1. Introduction

Agricultural soils are in general depleted in soil organic carbon (SOC) and, therefore, exhibit a high potential for carbon (C) sequestration. Various agroecological practices (APs) aim to maintain or **increase SOC** either by increasing C inputs into the soil, or by decreasing soil C losses. However, APs might potentially increase greenhouse gas emissions (GHG), which could limit their potential to mitigate climate change.

2. Main project objectives

The EJP-SOIL project TRUESOIL (2022-2025) investigates the "true" climate change mitigation potential of climate-smart APs under broad climatic and environmental gradients. It will investigate:

- how GHG emissions respond to changes in SOC under climatesmart APs across a wide range of climates and soils. particulate and mineral-associated OC by wet sieving* ✤ GHG emissions with chambers* and Eddy Covariance towers*
- mechanisms of SOC persistence and N₂O emissions under climate-smart APs and reduced rainfall.

rain-out shelters intercepting 50% of the occuring precipitation*

- the role of microbial community composition as shaped by APs in SOC persistence and GHG emissions.
 - carbon use efficiency (CUE) with DNA-¹⁸O incorporation⁺
 - Iab incubations to explore N-cycling potentials and links to CUE*
- SOC & GHG trade-offs under existing & alternative conditions
- process-based model DNDC, calibrated with TRUESOIL data, will simulate C & N cycling under climate & management scenarios⁺

Abbreviation: * in every field-site/sample; + in selected field-sites/samples

¹University of Göttingen, Göttingen, Germany; ²Norwegian Universitas Negeri Makassar, Indonesia; ⁴Prudence College Dublin, Ireland; ⁵National Research Institute for Agriculture and Environment, France; ⁶University of Otago, New Zealand; ⁷Jimma University Ethiopia; ⁸University of Helsinki, Finland; ¹¹Instituto Nacional de Tecnología Agropecuaria, Argentina; ¹²Universidad de Granada, Spain; ¹³Université Catholique de Louvain, Belgien; ¹⁴University of Aveiro, Portugal

UCLouvain UNM BLU

Federal Ministry of Education and Research

Visit our website & follow us on Twitter